profile photo

Email  /  Google Scholar  /  Github

Yue Song

I am a Computing & Mathematical Sciences postdoctoral research associate at Caltech, supervised by Yisong Yue, Pietro Perona, and Max Welling. I pursued doctoral studies under European Laboratory for Learning and Intelligent Systems (ELLIS), where I was affiliated with Multimedia and Human Understanding Group (MHUG) at University of Trento, Italy and Amsterdam Machine Learning Lab (AMLab) at University of Amsterdam, the Netherlands, advised by Nicu Sebe and Max Welling.

I research Structured Representation Learning at the Science—AI Interface. Scientific data are inherently structured -- shaped by geometric, temporal, and topological regularities rooted in the laws of physics, biology, and chemistry. My research focuses on developing deep learning models that uncover and encode these structures, enabling more interpretable, generalizable, and data-efficient solutions across scientific domains.

Central to this agenda is a reciprocal philosophy: I leverage beneficial inductive biases from scientific disciplines -- such as differential geometries, dynamical systems, and computational neuroscience -- to inform the design of machine learning models (Science4AI), and in turn, use these structured models to deepen our understanding of complex scientific phenomena (AI4Science). My current research is not task-oriented; I do not focus on a particular ML task. Instead, I am interested in developing structured methods and finding appropriate applications in the broad scientific domain.

Prior to my Ph.D. studies, I received the B.Sc. cum laude from KU Leuven, Belgium and the joint M.Sc. summa cum laude from University of Trento, Italy and KTH Royal Institute of Technology, Sweden. Besides the technical master's degree, I received an Innovation & Entrepreneurship minor degree from European Institute of Innovation and Technology (EIT Digital).

caltech_logo uva_logo ellis_logo unitn_logo kth_logo eit_logo kuleuven_logo
News
Selected Publications

Is CLIP ideal? No. Can we fix it? Yes!
Raphi Kang, Yue Song, Georgia Gkioxari, Pietro Perona
International Conference on Computer Vision (ICCV), 2025
paper / code / bibtex 

Langevin Flows for Modeling Neural Latent Dynamics
Yue Song, T. Anderson Keller, Yisong Yue, Pietro Perona, Max Welling
Cognitive Computational Neuroscience (CCN), 2025
paper / code / bibtex 

Gyrogroup Batch Normalization
Ziheng Chen, Yue Song, Xiaojun Wu, Nicu Sebe
International Conference on Learning Representations (ICLR), 2025
paper / code / bibtex 

Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song, T. Anderson Keller, Yisong Yue, Pietro Perona, Max Welling
submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2024
paper / code / bibtex 

RankFeat&RankWeight: Rank-1 Feature/Weight Removal for Out-of-distribution Detection
Yue Song, Wei Wang, Nicu Sebe
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2024
paper / code / bibtex 

Navigating Chemical Space with Latent Flows
Guanghao Wei, Yining Huang, Chenru Duan, Yue Song♦, Yuanqi Du
Advances in Neural Information Processing Systems (NeurIPS), 2024
paper / code / bibtex 
(♦ denotes equal supervision)

RMLR: Extending Multinomial Logistic Regression into General Geometries
Ziheng Chen, Yue Song♠, Rui Wang, Xiaojun Wu, Nicu Sebe
Advances in Neural Information Processing Systems (NeurIPS), 2024
paper / code / bibtex 
(♠ denotes the corresponding author)

A Lie Group Approach to Riemannian Batch Normalization
Ziheng Chen, Yue Song♠, Yunmei Liu, Nicu Sebe
International Conference on Learning Representations (ICLR), 2024
paper / code / bibtex 
(♠ denotes the corresponding author)




Flow Factorized Representation Learning
Yue Song, T. Anderson Keller, Nicu Sebe, Max Welling
Advances in Neural Information Processing Systems (NeurIPS), 2023
paper / code / bibtex

Householder Projector for Unsupervised Latent Semantics Discovery
Yue Song, Jichao Zhang, Nicu Sebe, Wei Wang
International Conference on Computer Vision (ICCV), 2023
paper / code / bibtex

Latent Traversals in Generative Models as Potential Flows
Yue Song, T. Anderson Keller, Nicu Sebe, Max Welling
International Conference on Machine Learning (ICML), 2023
paper / code / bibtex

Masked Jigsaw Puzzle: A Versatile Position Embedding for Vision Transformers
Bin Ren♣, Yahui Liu♣, Yue Song, Wei Bi, Rita Cucchiara, Nicu Sebe, Wei Wang
International Conference on Computer Vision and Pattern Recognition (CVPR), 2023
paper / code / bibtex
(♣ denotes co-first author)

Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Yue Song, Nicu Sebe, Wei Wang
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2022
paper / code / bibtex

Fast Differentiable Matrix Square Root and Inverse Square Root
Yue Song, Nicu Sebe, Wei Wang
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2022
paper / code / bibtex

RankFeat: Rank-1 Feature Removal for Out-of-distribution Detection
Yue Song, Nicu Sebe, Wei Wang
Advances in Neural Information Processing Systems (NeurIPS), 2022
paper / code / slides / bibtex

Batch-efficient EigenDecomposition for Small and Medium Matrices
Yue Song, Nicu Sebe, Wei Wang
European Conference on Computer Vision (ECCV), 2022
paper / code / slides / bibtex

Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality
Yue Song, Nicu Sebe, Wei Wang
European Conference on Computer Vision (ECCV), 2022
paper / code / slides / bibtex

On the Eigenvalues of Global Covariance Pooling for Fine-grained Visual Recognition
Yue Song, Nicu Sebe, Wei Wang
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2022
paper / code / bibtex

Fast Differentiable Matrix Square Root
Yue Song, Nicu Sebe, Wei Wang
International Conference on Learning Representations (ICLR), 2022, (Top 2.9%)
paper / code / slides / bibtex

Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?
Yue Song, Nicu Sebe, Wei Wang
International Conference on Computer Vision (ICCV), 2021
paper / supplementary / code / slides / poster / bibtex

Books

Structured Representation Learning: From Homomorphisms and Disentanglement to Equivariance and Topography
Yue Song, T. Anderson Keller, Nicu Sebe, Max Welling
Springer Nature, 2025

Web template © this.   All content © Yue Song
This page has been visited  times by  people.